Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kidney transplantation remains the preferred treatment for patients with end-stage kidney disease. However, the ongoing shortage of donor organs continues to limit the availability of transplant treatments. Existing evaluation methods, such as the kidney donor profile index (KDPI) and pre-transplant donor biopsy (PTDB), have various limitations, including low discriminative power, invasiveness, and sampling errors, which reduce their effectiveness in organ quality assessment and contribute to the risk of unnecessary organ discard. In this study, we explored the dynamic optical coherence tomography (DOCT) as a label-free, non-invasive approach to monitor the viability ofex vivomouse kidneys during static cold storage over 48 hours. The dynamic metrics logarithmic intensity variance (LIV), early OCT correlation decay speed (OCDSe), and late OCT correlation decay speed (OCDSl) were extracted from OCT signal fluctuations to quantify temporal and spatial tissue activity and deterioration. Our results demonstrate that DOCT provides complementary information relevant to tissue viability, in addition to the morphological assessment offered by conventional OCT imaging, showing potential to improve pre-transplant organ evaluation and clinic decision-making.more » « less
-
The investigation of gene regulation therapeutics for the treatment of skin‐related diseases is rarely explored in part due to inefficient systemic delivery. In this study, a bottlebrush polymer‐antisense oligonucleotide (ASO) conjugate, termed pacDNA, designed to target IL‐17 receptor A (IL‐17RA), which is involved in psoriasis pathogenesis is presented. Systemic administration of pacDNA led to its accumulation in epidermis, dermis, and hypodermis of mouse skin, reduced IL‐17RA gene expression in skin, and significantly reversed the development of imiquimod (IMQ)‐induced psoriasis in a mouse model. These findings highlight the potential of the pacDNA as a promising nanoconstruct for systemic oligonucleotide delivery to the skin and for treating psoriasis and other skin‐related disorders through systemic administration.more » « less
-
Abstract Variability of millimeter wavelength continuum emission from Class II protoplanetary disks is extremely rare, and when detected, it is usually interpreted as originating from nonthermal emission mechanisms that relate to the host star itself rather than its disk. During observations made as part of the AGE-PRO Large Program, significant variability in the brightness of the 2MASS J16202863-2442087 system was detected between individual executions. We report the observed properties of the variability detected at millimeter wavelengths and investigate potential driving mechanisms. To investigate the nature of the variability, we construct a light curve from the continuum observations and analyze images constructed from both flaring and quiescent emission. We characterize the dust disk around the star through analysis in the image and visibility plane, and carry out kinematic analysis of CO (2–1) emission from the gas disk. The continuum flux decays by a factor of 8 in less than an hour, and by a factor of 13 within 8 days. The peak brightness coincides with an expected brightness maximum extrapolated from the periodicity of previously observed optical variability. The flare is most likely the product of synchrotron emission in the close vicinity of the star. The nature of the millimeter flare closely resembles those detected in very close binary systems, and may be due to the interaction of magnetic fields in an as-yet undetected binary. Alternatively, if the central host is a single-star object, the flare may be due to the interaction of magnetic field loops at the stellar surface or a strong accretion burst.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Vergara, D; Jeronen, E (Ed.)Visual representations are essential to scientific research and teaching, playing a role in conceptual understanding, knowledge generation, and the communication of discovery and change. Undergraduate students are expected to interpret, use, and create visual representations so they can make their thinking explicit when engaging in discourse with the scientific community. Despite the importance of visualization in the biosciences, students often learn visualization skills in an ad hoc fashion without a clear framework. We used a mixed-methods sequential explanatory study design to explore and assess the pedagogical needs of undergraduate biology students (n = 53), instructors (n = 13), and teaching assistants (n = 8) in visual science communication education. Key themes were identified using inductive grounded theory methods. We found that extrinsic motivations, namely time, financial resources, and grading practices, contribute to a lack of guidance, support, and structure as well as ambiguous expectations and standards perceived by students and instructors. Biology and science visualization instructors cite visual communication assessments as a way of developing and evaluating students’ higher-order thinking skills in addition to their communication competencies. An output of this research, the development of a learning module, the Visual Science Communication Toolkit, is discussed along with design considerations for developing resources for visual science communication education.more » « less
-
Abstract The inward drift of millimeter–centimeter sized pebbles in protoplanetary disks has become an important part of our current theories of planet formation and, more recently, planet composition as well. The gas-to-dust size ratio of protoplanetary disks can provide an important constraint on how pebbles have drifted inward, provided that observational effects, especially resolution, can be accounted for. Here we present a method for fitting beam-convolved models to integrated intensity maps of line emission using theastropyPython package and use it to fit12CO moment zero maps of 10 Lupus and 10 Upper Scorpius protoplanetary disks from the ALMA Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Program, a sample of disks around M3-K6 stars that cover the ∼1–6 Myr of gas disk evolution. From the unconvolved best fit models, we measure the gas disk size ( ), which we combine with the dust disk size ( ) from continuum visibility fits from M. Vioque et al. to compute beam-corrected gas-to-dust size ratios. In our sample, we find gas-to-dust size ratios between ∼1 and ∼5.5, with a median value of . Contrary to models of dust evolution that predict an increasing size ratio with time, we find that the younger disks in Lupus have similar (or even larger) median ratios than the older disks in Upper Sco . A possible explanation for this discrepancy is that pebble drift is halted in dust traps combined with truncation of the gas disk by external photoevaporation in Upper Sco, although survivorship bias could also play a role.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract The ALMA survey of Gas Evolution in PROtoplanetary disks (AGE-PRO) Large Program aims to trace the evolution of gas disk mass and size throughout the lifetime of protoplanetary disks by using the Atacama Large Millimeter/submillimeter Array (ALMA). This paper presents Band-6 ALMA observations of 10 embedded (Class I and Flat Spectrum) sources in the Ophiuchus molecular cloud, with spectral types ranging from M3 to K6 stars, which serve as the evolutionary starting point in the AGE-PRO sample. While we find four nearly edge-on disks (≥70°), and three highly inclined disks (≥60°) in our sample, we show that, as a population, embedded disks in Ophiuchus are not significantly contaminated by more-evolved, but highly inclined sources. We derived dust disk masses from the Band-6 continuum and estimated gas disk masses from the C18OJ= 2−1 and C17OJ= 2−1 lines. The mass estimates from the C17O line are slightly higher, suggesting C18O emission might be partially optically thick. While the12CO and13CO lines are severely contaminated by extended emission and self-absorption, the C18O and C17O lines are allowed to trace the radial extent of the gaseous disks. From these measurements, we found that the C18OJ= 2−1 and C17OJ= 2−1 fluxes correlate well with each other and with the continuum fluxes. Furthermore, the C18O and C17O lines present a larger radial extension than disk dust sizes by factors ranging from ∼1.5 to ∼2.5, as is found for Class II disks using the radial extension of the12CO. In addition, we have detected outflows in three disks from12CO observations.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract Protoplanetary disk evolution can be deeply influenced by the UV radiation emitted by neighboring massive stars (mainly of spectral types O and B). We show that the process ofexternal photoevaporation, which causes an outside-in depletion of disk material due to environmental UV radiation, can lead to a significant decrease in disk size, disk mass, and lifetime even at moderate irradiation levels (1–10 G0). In this work, we investigate the role of external photoevaporation in shaping the masses and sizes of the 10 AGE-PRO disks in the Upper Scorpius (Upper Sco) region, which we estimate to be subject to far-ultraviolet (FUV) fluxes ranging between ∼2 and ∼12 G0, on average. We compare the disk masses and sizes resulting from 1D numerical viscous evolution simulations, in which the effect of external photoevaporation is included, to the values retrieved from the AGE-PRO observations. While the pure viscous framework fails in adequately explaining the observed disk properties in Upper Sco, with the inclusion of external photoevaporation, we can successfully reproduce gas disk sizes for seven out of 10 sources within a factor <2, when the initial disk mass is 1%–10% of the stellar mass. We emphasize the importance of accounting for the environmental irradiation when comparing star-forming regions of different ages, even when moderate FUV irradiation fields are experienced, as in the case of Upper Sco.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) large program AGE-PRO explores protoplanetary disk evolution by studying gas and dust across various ages. This work focuses on 10 evolved disks in Upper Scorpius, observed in dust continuum emission, CO and its isotopologues, and N2H+with ALMA Bands 6 and 7. Disk radii, from the radial location enclosing 68% of the flux, are comparable to those in the younger Lupus region for both gas and dust tracers. However, solid masses are about an order of magnitude below those in Lupus and Ophiuchus, while the dust spectral index suggests some level of dust evolution. These empirical findings align with a combination of radial drift, dust trapping, and grain growth into larger bodies. A moderate correlation between CO and continuum fluxes suggests a link between gas and dust content, through the increased scatter compared to younger regions, possibly due to age variations, gas-to-dust ratio differences, or CO depletion. Additionally, the correlation between C18O and N2H+fluxes observed in Lupus persists in Upper Scorpius, indicating a relatively stable CO gas abundance over the Class II stage of disk evolution. In conclusion, the AGE-PRO survey of Upper Scorpius disks reveals intriguing trends in disk evolution. The findings point toward potential gas evolution and the presence of dust traps in these older disks. Future high-resolution observations are needed to confirm these possibilities and further refine our understanding of disk evolution and planet formation in older environments.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract We perform visibility fitting to the dust continuum Band 6 1.3 mm data of the 30 protoplanetary disks in the Atacama Large Millimeter/submillimeter Array Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Large Program. We obtain disk geometries, dust-disk radii, and azimuthally symmetric radial profiles of the intensity of the dust continuum emission. We examine the presence of continuum substructures in the AGE-PRO sample by using these radial profiles and their residuals. We detect substructures in 15 out of 30 disks. We report five disks with large (>15 au) inner dust cavities. The Ophiuchus Class I disks show dust-disk substructures in ∼80% of the resolved sources. This evidences the early formation of substructures in protoplanetary disks. A spiral is identified in IRS 63, hinting to gravitational instability in this massive disk. We compare our dust-disk brightness radial profiles with gas-disk brightness radial profiles and discuss colocal substructures in both tracers. In addition, we discuss the evolution of dust-disk radii and substructures across Ophiuchus, Lupus, and Upper Scorpius. We find that disks in Lupus and Upper Scorpius with large inner dust cavities have typical gas-disk masses, suggesting an abundance of dust cavities in these regions. The prevalence of pressure dust traps at later ages is supported by a potential trend with time with more disks with large inner dust cavities (ortransition disks) in Upper Scorpius and the absence of evolution of dust-disk sizes with time in the AGE-PRO sample. We propose this is caused by an evolutionary sequence with a high fraction of protoplanetary disks with inner protoplanets carving dust cavities.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract The potential for planet formation of a circumstellar disk depends on the dust and gas reservoirs, which evolve as a function of the disk age. The Atacama Large Millimeter/submillimeter Array AGE-PRO Large Program has measured several disk properties across three star-forming regions of different ages, and in this study, we compare the observational results to dust evolution simulations. UsingDustPyfor the dust evolution, andRADMC-3Dfor the radiative transfer, we ran a large grid of models spanning stellar masses of 0.25, 0.50, 0.75, and 1.0M⊙, with different initial conditions, including: disk sizes, disk gas masses, and dust-to-gas ratio, and viscosity. Our models are performed assuming smooth, weakly, or strongly substructured disks, aiming to investigate if any observational trend can favor or exclude the presence of dust traps. The observed gas masses in the disks of the AGE-PRO sample are not reproducible with our models, which only consider viscous evolution with constantα, suggesting that additional physical mechanisms play a role in the evolution of the gas mass of disks. When comparing the dust continuum emission fluxes and sizes at 1.3 mm, we find that most of the disks in the AGE-PRO sample are consistent with simulations that have either weak or strong dust traps. The evolution of spectral index in the AGE-PRO sample is also suggestive of an unresolved population of dust traps. Future observations at high angular resolution are still needed to test several hypotheses that result from comparing the observations to our simulations, including that more massive disks in gas mass have the potential to form dust traps at larger disk radii.more » « lessFree, publicly-accessible full text available July 31, 2026
An official website of the United States government
